

RHIC regime and some features (December 16, 2003) A. Fedotov et al.

"Scaling-2" was done with lower electron density than needed for RHIC, in order to use just 100K particles in simulations for a fast exploration of some parameters. Dependence on plasma density was checked close to RHIC numbers and even above – relatively linear dependence for relevant to RHIC parameters.

RHIC regime was reproduced with an appropriate scaling of $\rho_{max'}$ ρ_{min} and r_L to have ratios between impact parameters similar to RHIC.

For RHIC, at rms ion velocities we have $\rho_{max}/r_L=3.5$

RHIC parameters

	Vorpal - "scaled-2"	RHIC	
Vion_parallel [m/s]	2*105	3*10 ⁵	
Vion_transverse [m/s]	2*105	6*10 ⁵	
Zion	5*79	79	
Ve_parallel [m/s]	1*103	9*104	
Ve_transverse [m/s]	4*106	9*106	
σ_{x} [m]	0.0002	0.0015	
σ_{z} [m]	0.00025	0.05	
n _e [m-3]	6.35*10 ¹⁴	2.7*10 ¹⁵	
ω _{pe} [rad/s]	1.4*109	2.9*109	

Friction force for RHIC parameters

How much magnetic field is too low?

Cooling log is very small: $Log[\rho_{max}/r_L]=1.3$

Applicability of all friction force formulas which we are using becomes questionable.

The immediate question: "Is B=1T enough?" and

"If not, how much magnetic field to we need?"

Magnetic field dependence for RHIC regime

1. Tested dependence on magnetic field: Is 1T field enough?

For 1T we are in "good magnetization" regime. Further increase of magnetic field improves magnetization – only Logarithmic dependence on magnetic field was observed, as expected:

$\Delta_e_t=4*10^6$:		dV_vorpal	dV_vp
$\rho_{\rm ma} / r_{\rm L} = 4$	B=1T	-1.5	-1.44
	B=2T	-2.0	-2.3

2. Dependence on magnetic field B=1 - > 4T for $\Delta_e_t=1*10^6$

Log dependence on magnetic field was observed – as expected for very good magnetization

For RHIC one gets ρ_{max}/r_L =3.5 with transverse electron temperature of 400eV.

If $T_{e\ t}$ is increased from 400eV to 1500eV we can keep ratio of

 ρ_{max}/r_L in the range 3 - 5 by increasing magnetic field strength from

B=1 -> 3T - present solenoid design will allow this range of magnetic field.

 $\Delta e_t - \epsilon_t - \epsilon_t$ so linear increase in emittance can be compensated by linear increase of magnetic field B.

What are we afraid of? (apart from question of accuracy of Log formulas)

Bad magnetization – so that "magnetized" cooling force formula is no longer "friendly"

Summary

- 1. Present RHIC parameters seems to be in a good magnetization regime.
- 2. Magnetic field can be adjusted if transverse temperature of electron beam is increased (for various reasons).
- 3. Despite the fact that Cooling Log is very small there seems to be a good agreement with empiric VP formula for this regime.

Other studies which were attempted:

- Study of "bad-magnetization" regime
- Maximum of the cooling force

